Subject: OFFICIAL COMMENT: Tangle

From: "Yaser Esmaeili" < yaser.esmaeili@gmail.com>

Date: Tue, 16 Dec 2008 10:20:06 +0330

To: "hash-function@nist.gov" <hash-function@nist.gov> **CC:** "hash-forum@nist.gov" <hash-forum@nist.gov>

Ηi,

I've had some observations on Tangle which can be utilized in the future.

Best regards, Yaser Esmaeili Sharif University of Technology, Iran

Tangle_Observation.pdf

Content-Type: application/pdf

Content-Encoding: base64

l of l 12/16/2008 9:51 AM

Some observations on Tangle

Yaser Esmaeili Salehani yaser.esmaeili@gmail.com

1. Introduction

Tangle is a hash function proposed by Alvarez, McGuire and Zamora [AMZ08] at the NIST Hash Competition3. No attack or weakness has been reported so far. In this paper, we give some observations on Tangle which can be utilized in the future.

2. Some observations on Tangle

We do not bring Tangle description and use the same notations and symbols as mentioned in [AMZ08].

Notations: $X(i,j) = X_{j}^{i}$ [e.g. $M(i,127) = M_{127}^{i}$]

Assumption: Let M'(i,127) - M(i,127) = M(i,119) - M'(i,119) =
$$\Delta$$
 or M'(i,127) + M'(i,119) = M(i,127) + M(i,119) = Δ '

With considering the Generator Seeding (GS) process and the above assumption, we investigate two chaining variables (e.g. X' and X) (also the middle variables) as following:

$$\begin{split} j=&0; \ g_{'1}=g_1, \ \dots, g_{'6}=g_6 \ , \ X'(0,0)=X(0,0), \\ \vdots \\ j=&7; \ g_{'1}=g_1, \ \dots, g_{'5}=g_5 \ , \ g_{'6}=M \ (i,103)+M \ (i,111)+M'(i,119)+M'(i,127)=g_6, \\ X'(0,7)=&FR_1(g_1+g_2+g_3)+FR_2(g_4+g_5+g_6')=X(0,7) \\ So, \ all \ of \ X'(0,j)=&X(0,j) \ (j=&0,1,\dots,7). \end{split}$$

In the next step, we consider the Iteration and Extraction (I&E) and Round Function (RF) processes together and apply them on the previous variables as following:

```
Note: Let R=72 if Tangle-224.

k=1 to R/2 (=36) and r=0 to R-1 (=71)

(I&E) k=1; X'(1,0) = X(1,0), ..., X'(1,7) = X(1,7), t=0, W'<sub>1</sub> = W<sub>1</sub>, ..., W'<sub>3</sub> = W<sub>3</sub>

(RF) r=0; C'=C, s'=s, p'=p, q'=q; A'=A, B'=B, h'<sub>0</sub>=h<sub>0</sub>, h'<sub>16</sub>=h<sub>16</sub>; r=1; C'=C, s'=s, p'=p, q'=q; A'=A, B'=B, h'<sub>1</sub>=h<sub>1</sub>, h'<sub>17</sub>=h<sub>17</sub>.

(I&E) k=2; X'(2,0) = X(2,0), ..., X'(2,7) = X(2,7), t=4, W'<sub>4</sub> = W<sub>4</sub>, ..., W'<sub>7</sub> = W<sub>7</sub>

(RF) r=2; C'=C, s'=s, p'=p, q'=q; A'=A, B'=B, h'<sub>2</sub>=h<sub>2</sub>, h'<sub>18</sub>=h<sub>18</sub>; r=3; C'=C, s'=s, p'=p, q'=q; A'=A, B'=B, h'<sub>3</sub>=h<sub>3</sub>, h'<sub>18</sub>=h<sub>18</sub>.

.

(I&E) k=30; X'(30,0) = X(30,0), ..., X'(30,7) = X(30,7), t=116, W'<sub>116</sub> = W<sub>116</sub>, ...,
```

 $W'_{119} = F_2(X'(30,6), X'(30,7), K_{119}) + M'(i,119) = W_{119} - \Delta.$

```
(RF) r=58; C' = W'<sub>116</sub>+ W'<sub>117</sub> = C, s'=s, p'=p, q'=q; A'=A, B'=B, h'<sub>0</sub>=h<sub>0</sub>, h'<sub>16</sub>=h<sub>16</sub>; r=59; C' = W'<sub>118</sub>+ W'<sub>119</sub> = C - \Delta, s'= s \oplus Sbox(C'\oplus(C'>>8)\oplus(C'>>16)\oplus(C'>>24)) it can be showed that s'=s by choosing the appropriate (-\Delta) (e.g. let - \Delta = \Delta<sub>3</sub>\Delta<sub>2</sub>\Delta<sub>1</sub>\Delta<sub>0</sub>, and \Delta<sub>0</sub> = \Delta<sub>1</sub> = 0, \Delta<sub>3</sub> = \Delta<sub>2</sub> = 0x80.), then, p'=p, q'=q; A'=A, B' = F<sub>2</sub>(h<sub>q'</sub>,h<sub>3</sub>,FR<sub>2</sub>(h<sub>p'+16</sub>) + W'<sub>119</sub> = B - \Delta, h'<sub>27</sub> = h<sub>27</sub> + B' = h<sub>27</sub> - \Delta, h'<sub>11</sub> = h<sub>11</sub> \oplus (A+B') = h<sub>11</sub> \oplus (A+B-\Delta).
```

```
(I&E) k=31; X'(31,0) = X(31,0), ..., X'(31,7) = X(31,7), t=120, W'_{120} = W_{120}, ..., W'_{123} = W_{123}.
```

(RF) **r=60**; C' = C, s'=s, p'=p, q'=q; here, some conditions might be risen: for example: if p' = p = 11, then $h'_{11} \neq h_{11}$ and/or $h'_{11+16} \neq h_{11+16}$ and finally,

A' = $F_1(h_{p'},h_{28},FR_1(h_{q'+16})) + W'_{120} + K_{s'} \neq (?)$ A, B' = $F_1(h_{q'},h_4,FR_2(h_{p'+16})) + W'_{121} \neq (?)$ B, otherwise: $h'_{28} = (?) h_{28}$, $h'_{12} = (?) h_{12}$;

r=61; C' = C, s'=s, p'=p, q'=q; similar to the previous explanations, if again p' = p = 11 and/or 12, then $h'_{11} \neq h_{11}$ and/or $h'_{11+16} \neq h_{11+16}$, also it is possible that $h'_{12} \neq h_{12}$ and/or $h'_{28} \neq h_{28}$, then $A' \neq (?)$ A, $B' \neq (?)$ B, otherwise: $h'_{29} = (?)$ h_{29} , $h'_{13} = (?)$ h_{13} .

(I&E) **k=32**;
$$X'(32,0) = X(32,0), \ldots, X'(32,7) = X(32,7), t=124, W'_{124} = W_{124}, \ldots, W'_{127} = F_2(X'(32,6), X'(32,7), K_{127}) + M'(i,127) = W_{127} + \Delta.$$

(RF) **r=62**; C' = C, s'=s, p'=p, q'=q; similar to the previous section, if p' = p = 11 and/or 12 and/or 13, then $h'_{11} \neq h_{11}$ and/or $h'_{11+16} \neq h_{11+16}$, also it is possible that $h'_{12} \neq h_{12}$ and/or $h'_{28} \neq h_{28}$, $h'_{13} \neq h_{13}$ and/or $h'_{29} \neq h_{29}$ then $A' \neq (?)$ A, $B' \neq (?)$ B, otherwise: $h'_{30} = (?) h_{30}$, $h'_{14} = (?) h_{14}$;

r=63; C' = W'₁₂₆+ W'₁₂₇ = C + Δ, s'= s ⊕ Sbox(C'⊕(C'>>8)⊕(C'>>16)⊕(C'>>24)), again, it can be showed that s'=s by choosing the appropriate (Δ) (e.g. let $\Delta = \Delta_3\Delta_2\Delta_1\Delta_0$, and $\Delta_0 = \Delta_1 = 0$, $\Delta_3 = \Delta_2 = 0x80$ or the other options.), then, p'=p, q'=q; similar to the previous section, if p' = p = 11 and/or 12 and/or 13 and/or 14, then h'₁₁ ≠ h₁₁ and/or h'₁₁₊₁₆ ≠ h₁₁₊₁₆, also it is possible that h'₁₂ ≠ h₁₂ and/or h'₂₈ ≠ h₂₈, h'₁₃ ≠ h₁₃ and/or h'₂₉ ≠ h₂₉, h'₁₄ ≠ h₁₄ and/or h'₃₀ ≠ h₃₀ then A' ≠ (?) A, B' ≠ (?) B, otherwise: h'₃₁ = (?) h₃₁, h'₁₅ = (?) h₁₅.

.

(I&E) **k=36**; X'(36,0) = X(36,0), ..., X'(36,7) = X(36,7), t=140, $W'_{141} = W_{141}$, ..., $W'_{144} = W_{144}$.

(RF) **r=70**; C' = C, s'=s, p'=p, q'=q; similar to the previous section, if p' = p = 11 and/or 12 ... and/or 21, then $h'_{11} \neq h_{11}$ and/or $h'_{11+16} \neq h_{11+16}$, also it is possible that $h'_{12} \neq h_{12}$ and/or $h'_{28} \neq h_{28}$, ..., $h'_{21} \neq h_{21}$ and/or $h'_{6} \neq h_{6}$ then $A' \neq (?)$ A, $B' \neq (?)$ B, otherwise: $h'_{6} = (?)$ h_{6} , $h'_{22} = (?)$ h_{22} ;

r=71; C' = C, s'= s, p'=p, q'=q; similar to the previous section, if p' = p = 11 and/or 12 ... and/or 22, then $h'_{11} \neq h_{11}$ and/or $h'_{11+16} \neq h_{11+16}$, also it is possible that $h'_{12} \neq h_{12}$ and/or $h'_{28} \neq h_{28}$, ..., $h'_{22} \neq h_{22}$ and/or $h'_{7} \neq h_{7}$ then $A' \neq (?)$ A, $B' \neq (?)$ B, otherwise: $h'_{7} = (?) h_{7}$, $h'_{23} = (?) h_{23}$.

Although the output hash values are depended on the first seven words of h_i (i=0,1,...,6), it is clear that some output words do not change at all such as: h_8 , h_9 , h_{10} , h_{24} , h_{25} , h_{26} .

Obviously, we can not say that a direct attack has been proposed, but an attack might be found to exploit this weakness. In future, we will give more details our observations.

Also, it can be continued for the upper rounds of Tangle (e.g. for R=80 (Tangle-256)).

3. References

[AMZ08] Rafael Alvarez, Gary McGuire and Antonio Zamora, "The Tangle Hash Function", Submission to NIST, 2008. http://ehash.iaik.tugraz.at/wiki/Tangle.

Subject: OFFICIAL COMMENT: Tangle

From: Søren Steffen Thomsen <ssth@win.dtu.dk>

Date: Tue, 16 Dec 2008 15:38:49 +0100

To: <hash-function@nist.gov> **CC:** <hash-forum@nist.gov>

Hi.

I have found practical collisions in Tangle-n for all supported digest sizes n.

As an example, the following is a collision in Tangle-256 (messages are written byte-by-byte, without padding):

Message 1:

f710be651ab67737a58ac452056bbf13e62abed071943617dadbf25c2dea710b

Message 2:

f710be651ab67737a58ac452056bbf13e62abed071943617dadbf25c2dea710b XOR of hashes:

A description of the attack can be downloaded from http://www.mat.dtu.dk/people/S.Thomsen/tangle/tangle-coll.pdf.

Best regards, Søren Thomsen.

www.mat.dtu.dk/

Søren Steffen Thomsen PH.D. student DTU Mathematics

Technical University of Denmark
Department of Mathematics
Matematiktorvet 303S
Building 303S
2800 Kgs. Lyngby
Direct +45 4525 3010
Mobile +45 2290 5443
S.Thomsen@mat.dtu.dk

l of l 12/16/2008 9:52 AM